Slunce

Napsal Enciklopedie pro všechny!! (») 13. 1. 2011 v kategorii Fyzika, přečteno: 4675×
slunce.jpg

Slunce

Slunce je hvězda hlavní posloupnosti, spektrální třídy G2V.[1] patřící do třídy svítivosti V. Obíhá okolo středu Mléčné dráhy ve vzdálenosti od 25 000 do 28 000 světelných let. Oběh trvá přibližně 226 milionů let. Tvoří centrum sluneční soustavy, od Země je vzdálená 1 AU (asi 150 milionů km). Je tedy hvězdou k Zemi nejbližší. Hmotnost Slunce je asi 330 000 krát větší než hmotnost Země[1] a představuje 99,8 % hmotnosti sluneční soustavy. Slunce je koule žhavého plazmatu, neustále produkuje ohromné množství energie. Jeho výkon je zhruba 4×1026 W, z čehož na Zemi dopadá asi 45 miliardtin. Tok energie ze Slunce na Zemi činí asi 1,4 kW m−2.

Slunce je staré přibližně 4,6 miliard let,[2] což je řadí mezi hvězdy středního věku. Bude svítit ještě asi 5 až 7 miliard let.[2] Teplota na povrchu Slunce činí asi 5800 K, proto je lidé vnímají jako žluté (i když maximum jeho vyzařování je v zelené části viditelného spektra). Průměr Slunce je zhruba 1 400 000 km, což činí asi 109 průměrů Země. Jeho objem je tedy asi 1,3 milionkrát větší než objem Země. Hustota Slunce je průměrně 1400 kg m−3.[3]Slunce se otáčí jinou rychlostí u pólů a na rovníku. Na rovníku se otočí jednou za 25 dní, na pólu za 36 dní. Jeho absolutní magnituda je +4,1, relativní pak -26,74.[1] Je to tak nejjasnější těleso na obloze. Astronomický symbol pro Slunce je kruh s bodem uprostřed, v Unicode ☉.

Význam

Slunce je hvězda nejbližší k Zemi, jejíž povrch zásobuje teplem a světlem. Světlo dosáhne povrchu Země přibližně za 8 minut a 19 sekund[4] (přičemž z druhé nejbližší hvězdy Alpha Centauri dosáhne světlo zemského povrchu za 4,35 roku). Vzdálenost mezi Zemí a Sluncem se pohybuje v rozmezí 147 097 000 km (perihélium) až do 152 099 000 km (afélium).[4] Tyto změny vzdálenosti však nejsou příčinou střídání ročních období na Zemi. Od zdánlivého pohybu Slunce se současně odvozuje i pravý sluneční čas. Jeho upravená hodnota v podobě středního slunečního času je základem měření času v běžném životě.

Energie slunečního záření pohání téměř všechny procesy, které na Zemi probíhají. Je na ní závislé podnebí, změny počasí i teploty, významně se podílí na přílivu a odlivu. Pomáhá udržet na zemském povrchu vodu v kapalném skupenství, je klíčovým faktorem pro fotosyntézu rostlin a umožňuje živočichůmvidět.

Zemská atmosféra propouští jen část spektra slunečního záření - všechny složky viditelného spektra, část ultrafialového, infračerveného a radiového záření.

Ultrafialové záření podněcuje tvorbu vitaminu D vznikajícího v lidské kůži.[5] Při dlouhodobějším působení ale může způsobovat i nepříznivé efekty v podobě mutací a vzniků nádorových onemocnění[5] či slepoty.[6]

Vývoj představ o Slunci

Slunce je jedním z nejstarších náboženských motivů a předmětem uctívání

Slunce bylo ve starověku v mnoha kulturách uctíváno jako božstvo. V antickém Řecku byl bohem SlunceHelios, který cestoval každý den po obloze ve svém zlatém voze. Ve starověkém Římě se nazýval Sol a ve starověkém Egyptě pak Ré, Ra či Amon. V astrologii je Slunce symbolem vitality a zdraví. Většina kultur považovala Slunce za symbol života a znovuzrození, což bylo spojeno s jeho pravidelným objevováním se na obloze každé ráno.

První písemné zmínky o pozorování Slunce pocházejí z období 2000 let př. n. l. ze starověké Číny. V roce 762 př. n. l. bylo pozorováno první zatmění Slunce v Asýrii, o kterém se dochovaly písemné zmínky v podobě hliněné destičky psané klínovým písmem.[7]

Anaxagoras se v roce 434 př. n. l. domníval, že se Slunce skládá z hromady hořícího kamení, které je jen o málo větší než Řecko. Dle představ mnohých civilizací Slunce obíhalo okolo Země a nikoliv Země kolem Slunce, jak bylo později prokázáno. Aristoteles ve svém modelu vesmíru umístil Slunce mezi oběžnou dráhu Měsíce a Merkuru, čímž na dlouhou dobu ovlivnil řadu dalších myslitelů. Aristarchos ze Samupředvedl současně teorii, že Slunce je středem soustavy a že Země kolem něho obíhá.[7] Tato raná heliocentrická představa se příliš neuchytila a až do roku1507 převažoval názor, že středem soustavy je Země. V roce 1543 publikoval svoje teze Mikuláš Koperník v knize De revolutionibus orbium coelestium, kde se vyjádřil pro heliocentrickou soustavu. Konstrukce prvního dalekohledu značně rozšířila možnosti zkoumání Slunce, čehož využil Galileo Galilei a D. Fabricius pro pozorování slunečních skvrn.[7]

Sluneční skvrna

Objevení slunečních skvrn značně pobouřilo tehdejší katolickou obec, jelikož do té doby se věřilo, že Slunce je tvořeno z „dokonale čistého éteru“ a tedy je nemožné, aby se na jeho povrchu nacházely tmavší plochy. Během následujících dvou let se ale podařilo minimálně čtyřem dalším pozorovatelům pozorovat sluneční skvrny, což podpořilo Galileovo pozorování.

V roce 1625 jezuita Christoph Scheiner zjistil, že Slunce rotuje podobně jako Země okolo svojí rotační osy.[7] Tento objev učinil na základě pozorování slunečních skvrn, které se během pozorování nápadně pohybovaly od jednoho okraje ke druhému. Významným krokem pro porozumění významu a pozice Slunce se stalo objevení Keplerových zákonů a Newtonovo gravitačního zákonu. Díky nim se zjistilo, že Slunce je velmi hmotné a že všechna tělesa ve sluneční soustavě kolem něho obíhají. Velikost a vzdálenost od Země byly poprvé přesně změřeny v roce 1672 díky přesným měřením italského astronomaGiovanniho Cassini a Johna Flamsteeda. V roce 1814 použil německý astronom Joseph von Fraunhofer spektroskop pro analýzu slunečního světla a zjistil, že spektrum Slunce je přerušované tmavými absorpčními čárami. Tyto čáry byly pojmenovány jako Fraunhoferovy čáry a staly se důležitým pomocníkem při pozdějším určování chemického složení Slunce.

Ve druhé polovině 19. století bylo Slunce a další hvězdy velmi intenzivně studovány, jelikož zde platila vzájemná provázanost. Nové objevy u Slunce pomáhaly vědcům pochopit procesy, které se odehrávají v jiných hvězdách a opačně. Příčina jeho záření ale přes veškerou námahu zůstávala dlouho nejasná. Jedna z hypotéz vyslovená skotským inženýrem Johnem Waterstonem předpokládala, že vyzářená energie pochází z gravitační kontrakce Slunce. Další vyslovená J. Mayerem tvrdila, že teplota Slunce je udržována dopady meteoritů na jeho povrch.

Důležitým mezníkem pro pochopení Slunce se stal objev spektrometrie, díky které došlo k určení chemického složení Slunce. Postupně se začalo předpokládat, že hlavní energetický zdroj Slunce bude v podobě jaderných reakcí. Začaly panovat debaty o formě této jaderné reakce, zda se tedy jedná o slučování (fúzi), nebo o štěpení. Až v roce 1938 navrhl německý fyzik Hans Bethe jadernou fúzi jako zdroj Slunce. Tato teorie byla definitivně potvrzena až v roce 2002.

Vlastnosti

Rozklad světla na spektrální barvy

Slunce je jednoznačně největší nebeské těleso, které se nachází ve sluneční soustavě. Má přibližně 109 krát větší průměr než Země a 1 300 000 násobně větší objem. Celkově obsahuje okolo 99,8 % hmoty sluneční soustavy. Funguje jako obrovská plazmová koule[1] s průměrnou hustotou jen o málo větší, než je hustota vody.[2] Směrem ke středu hustota i teplota narůstá.

V porovnání s ostatními hvězdami v naší Galaxii patří do středně staré skupiny hvězd. Jeho hmotnost a svítivost je však větší než je průměr hvězd nacházejících se v naší Galaxii, který se odhaduje asi na polovičku hodnot Slunce. Průměr hmotnosti a svítivosti hvězd v Galaxii je totiž tvořen červenými trpaslíky. Zvláštností Slunce je i to, že se jedná o samostatnou hvězdu, která netvoří vícenásobný systém, či dvojhvězdu (i když se v některých případech spekuluje o nepovedené dvojhvězdě Slunce – Jupiter) a současně také není členem žádné hvězdokupy.

Barva

Barva ze Země se značně mění v průběhu dne a v závislosti na stavu atmosféry

Slunce je viděno ze Země jako červené jen při svém východu a západu. Tedy tehdy, kdy je nízko nad obzorem a sluneční světlo na Zemi dorazí až poté, co vykonalo dlouhou cestu nižší a hustší vrstvou atmosféry. Molekuly vzduchu absorbují kratší vlnové délky světla (modré světlo), takže pozorovateli zůstane převážně červená. Při východu a západu se může Slunce zdát šišaté či velmi velké, což je také způsobeno tím, že světlo urazí dlouhou dráhu hustší atmosférou, čímž je zkreslen jeho tvar.

Naopak je-li Slunce kolem poledne vysoko nad obzorem, jeví se barva oblohy jako modrá, protože sluneční světlo urazí nejkratší vzdálenost atmosférou. Tato vzdálenost odpovídá vlnové délce modrého světla, ostatní vlnové délky (delší - červená,…) jsou molekulami absorbovány, proto je obloha modrá a v této fázi tvar Slunce nejvíce odpovídá skutečnosti. Obsahuje-li ovšem atmosféra velké množství vodních par, dojde k absorpci i vlnových délek odpovídajících modré barvě a na obloze tak vznikají mraky, jež jsou šedé až černé barvy.

Pokud je Slunce pozorováno z místa mimo vliv atmosféry, je díky svojí pozici v hlavní posloupnosti hvězd na pozici hvězdy ze spektrální třídy G2, tedy hvězda menší než modrý obr. Slunce emituje záření v celém elektromagnetickém spektru, nejintenzivnější vyzařování má na vlnové délce 501 nm.

Prostorový snímek Slunce pořízený observatořemi STEREO. Slunce je téměř dokonalá koule s minimálním zploštěním na pólech

Tvar Slunce

Slunce je téměř dokonalá koule,[8] se zploštěním přibližně pouhých 10 km polárního průměru vzhledem k rovníkovému. Tento téměř ideální stav je dán částečně tím, že odstředivý efekt sluneční rotace je asi 18 milionkrát slabší, než přitažlivost na povrchu v oblastirovníku.

Sluneční energie

Téměř všechna energie Slunce je vyzařována ve formě elektromagnetického záření, které je nezbytným předpokladem pro všechny formy života na Zemi. Vzniká jako výsledek termonukleární reakce pp-řetězce, kdy dochází k přeměně vodíku na hélium za současného uvolňování energie. Předpokládá se, že každou sekundu Slunce spotřebuje a přemění 700 miliónů tun vodíku na 695 miliónů tun hélia. Zbytek v podobě 5 miliónů tun je přeměněn na energii v poměru 96 % elektromagnetického záření a 4 % elektronová neutrina.[2]

Všechno elektromagnetické záření včetně viditelného záření pochází z fotosféry. Každou sekundu vyzáří Slunce do okolí tolik energie, že by to stačilo pokrýt potřeby celého světa na více než 1000 let. Energie ve středu Slunce vzniká ve formě fotonů gama záření a neutrin. Na povrch Slunce se dostává prostřednictvím konvekce, absorpce a emise, opouští ho v podobě elektromagnetické radiace a neutrin (v malé míře také v podobě kinetické energii a termální energie slunečního větru a jako energiemagnetického pole. Tlak záření, které se dostává na povrch Slunce, je obrovský a vyrovnává se působením gravitační síly, kterou jsou všechny částice ve Slunci přitahovány k jeho středu. Slunce je v hydrostatické rovnováze.[8]

Sluneční neutrina je možno detekovat pomocí neutrinového detektoru. Sledování slunečních neutrin je důležité, protože může poskytovat informace o jádře Slunce v téměř reálném čase na rozdíl od fotonů, které ze středu putují tisíce až milióny let. Současný počet pozorovaných slunečných neutrin je však asi třikrát menší, než počet neutrin, které bylo předpovídáno modelem. Rozdíl mezi předpokládaným a skutečným počtem neutrin se dlouho nepodařilo uspokojivě vysvětlit. Měření pomocí neutrinového detektoru Subdury Neutrino Observatory však potvrdilo teorii, že neutrina mají nenulovou hmotnost a že po dobu své cesty zevnitř Slunce k Zemi oscilují mezi elektronovým neutrinem, mionovým neutrinem a tauónovým neutrinem. Současné detektory založené na chlóru a galiuvšak mohou zachytit jen elektronová neutrina.[9]

Od svého vzniku už Slunce spotřebovalo polovinu svých zásob vodíku. Dalších přibližně 5 až 7 miliard let bude ještě ve Slunci probíhat termonukleární reakce, během které se přemění většina vodíku na helium. Až dojde vodík v jádře, naruší se na krátký čas hydrostatická rovnováha, což povede k tomu, že se stane červeným obrem. Zvětšováním průměru Slunce dojde k tomu, že nejbližší planety budou pohlceny rozšiřujícím se Sluncem. Předpokládá se, že bude pohlcena i Země.

Sluneční světlo

Dopadající sluneční světlo na Zemi má bílou barvu se spektrem složených barev, které se rozkládají od červené, přes oranžovou, žlutou, zelenou, modrou až po fialovou. Tyto barvy je možné vidět během polarizace světla či v přírodě během vzniku duhy, která má v tomto pořadí i seřazené barvy.[3]

Složení Slunce

Složení Slunce není do dnešních dnů zcela známé. Většina informací o jeho složení pochází z výzkumu spektrálních čar. Slunce není složeno homogenně, ale jeho chemické složení je závislé na hloubce. V jádře vlivem jaderných reakcí je větší obsah helia, než na jeho povrchu. Předpokládá se, že v jádře je vodík zastoupen již 34 % a hélium 64 %. Spektrum současně ukazuje, že se ve Slunci nachází ve stopovém množství většina prvků, které jsou známé na Zemi.

V roce 2003 měla americká sonda Genesis za úkol výzkum slunečního větru a odebrání jeho vzorků. Při přistávání návratového modulu na Zemi se však neotevřely padáky a pouzdro se zřítilo. Velká část vzorků tak byla poškozena.

Fyzikální pohyby Slunce

Rotace

Hypotézu rotace Slunce poprvé vyslovil roku 1609 Johannes Kepler ve své knize Astronomia nova.

Všechna hmota na Slunci se díky extrémní teplotě vyskytuje v podobě plazmy. To umožňuje, aby Slunce rotovalo rychleji na rovníku než ve vyšších zeměpisných šířkách. Díky tomuto rozdílu je magnetické pole Slunce deformované a tvarem připomíná silotrubici. Tato deformace magnetického pole způsobuje erupce a spouští vznik slunečních skvrn a protuberancí.

Umělecká představa zachycující přibližnou pozici Slunce v Galaxii Mléčná dráha

Slunce rotuje okolo své osy v porovnání s jinými hvězdami pomalu. Rychlost rotace není všude na povrchu stejná. Na rovníku se Slunce otočí jednou za 25,38 dne, na pólech za 36 dní. Tento jev se nazývá diferenciální rotace. Vnitřek Slunce se otáčí jako tuhé těleso jednotnou rychlostí jednou za 27 dní. Toto jesynodická doba rotace, která je počítána vzhledem k Zemi. Vůči okolním nehybným objektům se Slunce otočí jednou za 25,38 dne.

Obíhající tělesa

Slunce je hlavním tělesem sluneční soustavy, které má 745× větší hmotnost než všechny planety soustavy. Slunce si tak udržuje gravitačním působením dominanci v soustavě. Těžiště sluneční soustavy se nachází blízko Slunce, podle působení ostatních planet je nad nebo pod jeho povrchem.[17] Ostatní tělesa soustavy obíhají kolem tohoto těžiště v o mnoho řádů větších vzdálenostech, takže je korektní označit jejich oběh za oběh kolem Slunce. Těmi to tělesy jsou především planety, trpasličí planety, planetky, meteoroidy, komety a kosmický prach.

Aby těleso bylo schopno uniknout z gravitačního působení Slunce, musí překonat tzv. třetí kosmickou rychlost. Ta se mění podle vzdálenosti tělesa od Slunce – např. u Země je 42,1 km/s.

Zatmění Slunce

Zatmění Slunce je astronomický jev, který nastane, když Měsíc vstoupí mezi Zemi a Slunce, takže jej částečně, nebo zcela zakryje. Taková situace se objevuje, jen pokud je měsíc v novu a Slunce i Měsíc jsou při pohledu ze Země v jedné přímce. Na části Země, kde je zatmění pozorováno, dochází k výraznému setmění, ochlazení, kolem černého středu slunce je vidět výrazná záře sluneční koróny, objeví se hvězdy i některé planety a známé jsou také neobvyklé reakce zvířat. Tyto průvodní jevy v některých kulturách v minulosti vedly ke spojování události s náboženstvím a přisuzování mystických významů. V moderní době jsou však duchovní významy zatmění Slunce většinou odmítány v důsledku snadnosti pochopení jeho příčin.

Pozorování Slunce

Slunce je na denní obloze velmi jasné těleso, které se nedoporučuje pozorovat nechráněným okem, jelikož jeho delší pozorování by mohlo vést k poškozenízraku.[18] Přímý pohled do Slunce způsobuje fosfenové vizuální jevy a dočasnou částečnou slepotu. Při přímém pohledu působí Slunce na sítnici výkonem asi 4 miliwatty, což vede k zahřívání sítnice a k jejímu možnému poškození.

Během východu a západu Slunce je sluneční sv

ětlo zeslabeno rozptylem světla díky obzvláště dlouhému průchodu zemskou atmosférou; za těchto podmínek lze Slunce bez nebezpečí pozorovat. Mlha, atmosférický prach a vysoká vlhkost přispívají k atmosférickému zředění.[zdroj?]

Pozorování Slunce optikou soustřeďující záření, jako je dalekohled, je bez ochranného filtru tlumícího záření velmi nebezpečné. Je důležité použít vhodný filtr; improvizované filtry mohou propustit UV záření, které může při vysoké jasnosti poškodit zrak. Nefiltrovaný dalekohled může na sítnici doručit 500 krát více slunečního světla než prosté oko, čímž téměř okamžitě zabíjí buňky sítnice. I krátký pohled do poledního Slunce přes nefiltrovaný dalekohled může způsobit trvalou slepotu.[18] Bezpečný způsob, jak pozorovat Slunce, je promítnutí jeho obrazu na plátno či papír pomocí dalekohledu nebo malého teleskopu.

Doporučuje se, aby pozorovatel byl vybaven speciálními ochrannými pomůckami i během pozorování slunečního zatmění a to jak celkového, tak i částečného. Jako nejvhodnější ochrana se doporučuje používat speciální brýle pro pozorování Slunce.

Hodnocení:     nejlepší   1 2 3 4 5   odpad
Facebook MySpace Google Twitter Topčlánky.cz Linkuj.cz Vybrali.sme.sk Del.icio.us

Komentáře

Zobrazit: standardní | od aktivních | poslední příspěvky | všechno
Článek ještě nebyl okomentován.


Nový komentář

Téma:
Jméno:
Notif. e-mail *:
Komentář:
  [b] [obr]
Odpovězte prosím číslicemi: Součet čísel dvě a čtyři